论文部分内容阅读
题目椭圆E:x2/a2+y2/b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且△ABF2得周长为8.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说
Subject elliptical E: x2 / a2 + y2 / b2 = 1 (a> b> 0) the left focus is F1, the right focus is F2, the eccentricity e = 12. And the circumference of △ ABF2 is 8. (Ⅰ) Find the equation of ellipse E; (Ⅱ) Let the straight line l: y = kx + m and the ellipse E have only one common point P, and intersect the straight line x = 4 Point Q. Try to find out whether there is a fixed point M in the coordinate plane, such that the circle with PQ as the diameter is constant M? If there exists, find the coordinate of point M; if it does not exist, say