论文部分内容阅读
初一代数中学过的幂的运算性质是: ①a~m·a~n=a~(m+n)(m、n都是整数); ②(a~m)~n=a~(mn)(m、n都是整数); ③(ab)~n=a~nb~n(n为整数); ④a~m÷a~n=a~(m-n)(a≠0,m、n都是整数,且m>n). 其中同底数幂的运算性质是最基本的性质,它和幂的乘方、积的乘方、同底数幂的除法综合在一起,演变出各种形式的习题,现举例如下.
The arithmetic properties of the powers learned in the first generation number are: 1a~m~a~n=a~(m+n) (m and n are integers); 2(a~m)~n=a~(mn) (m, n are integers); 3(ab)~n=a~nb~n(n is an integer); 4a~m÷a~n=a~(mn) (a≠0, m, n are Integer, and m>n). Among them, the nature of the operation of the same power as the base is the most basic property. It combines the power of the power, the product of the power of the square, and the division of the power of the same base, and it evolves various forms of exercises. The example is as follows.