论文部分内容阅读
源-目标说话人声音转换是一种变换说话人声音特征的技术,它将源说话人的声音转换成目标说话人的声音.其中,声道参数的转换是获得高质量重建语音的关键,所以选择声道共振峰参数作为待转换的特征参数,利用线性预测求根法提取共振峰参数.为了克服分类线性转换算法(CLT)中分类不准带来的误差,引入了分类线性加权转换的策略,给出了一种基于径向基函数神经网络的分类线性加权转换算法(WCLT).在微软汉语普通话语音数据库上对转换语音分别作了客观和主观评估,验证了分类数目和训练集对两种转换算法的影响.实验结果表明,WCLT算法的