论文部分内容阅读
针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不同尺寸卷积核通道的特征提取层,对一维时序信号中故障特征进行多尺度特征提取,丰富智能体诊断信息,将所提取特征通过输入到包含多尺寸卷积核以及多样池化层中进行特征处理,最后合并多通道所处理的特征,使网络完成自我学习,从而实现故障诊断。将该方法应用到西储大学轴承故障数据及行星齿轮箱的故障数