论文部分内容阅读
摘要:随着城市化进程的加快,高层、超高层建筑已成为城市快速发展和进步的风向指标。高层建筑结构复杂、功能齐全、类型多样化,其结构设计存在各种各样的问题。因此,本文针对高层建筑结构设计的特点,针对高层建筑结构的特点和设计问题,分析总结设计的要点,提出相对的控制措施和注意事项,为广大结构设计者提供借鉴和参考。
关键词:高层建筑,结构设计,分析,研究
中图分类号:[TU208.3] 文献标识码:A 文章编号:
1 引言
我国经济的快速发展加快了城市化进程的脚步,同时带动了建筑业的腾飞,建筑技术随之也有了质的飞跃。高层建筑的发展使有限的土地面积得到了最大化的使用,发展无限的空间,缓解了城市用地紧张和城市人口压力,并且高层建筑一跃成为建筑发展的主流导向,俨然成为城市高度发展的标志。高层建筑结构层数多、复杂难度大、施工困难、管理复杂、工序繁多、建设周期长、质量难以保证等诸多的特殊性,给设计施工带来了许多不便。高层建筑能够做到结构功能与外部条件的一致,设计理念先进,能够充分发挥结构的功能并保持經济性的协调,更好的解决构造问题。高层建筑结构总体系与各个分支体系设计和构造处理的原则、力学性质以及工作原理、力学模型和功能等这些高层建筑概念设计的依据都需要在实践中不断的积累经验。本文从高层建筑结构设计的角度出发,针对高层建筑结构的特点和设计问题,分析总结设计的要点,提出相对的控制措施,以期为相关的结构设计人员提供借鉴和参考。
2 高层建筑结构设计特点
相比低层、多层建筑结构,高层建筑结构中结构专业在各个专业中发挥着更为重要的作用,结构体系的选择直接关系到建筑的平面布置、楼层高度、施工技术、机电管道、施工工期、造价成本等,主要设计特点有以下几点:
1)高层建筑结构设计的主要因素是水平载荷,其也是高层建筑结构设计的决定因素,在低层和多层建筑结构中,一般是以重力为代表的竖向载荷对结构设计起着至关重要的作用。在高层建筑结构设计中,虽然竖向载荷对结构存在着重要的影响作用,但是水平载荷更为重要,之所以这样认为,是因为水平力对高层建筑结构安全稳定性的影响程度要远远超过竖向载荷对结构的影响。建筑结构设计中的竖向载荷包括建筑自重以及建筑楼面的使用载荷,它们在竖向构件中作用的轴力和弯矩的大小与建筑高度的一次方成正比关系,而水平载荷对建筑结构产生的倾覆力矩,和由此在竖向构件中产生的轴力,都与建筑高度的二次方成正比关系,因而,对于一定高度的建筑来说,竖向载荷是定值,而水平载荷主要是风载荷和地震水平分力,它们的数值大小是动态的,具有不确定性,对着结构动力学的不同随之产生较大的变化,而随着建筑高度的增加,较小的水平载荷也会产生较大的倾覆力矩和轴力,因此水平载荷是高层建筑安全性能的主要决定性因素之一。
2)建筑结构中,轴向变形对结构的影响主要表现在连续梁支座的安全和预测构件的下料长度方面。在高层建筑结构中,由于竖向载荷较大,柱中的挠度也较大,这样直接影响了连续梁弯矩,导致中间支座附近的负弯矩减小,而连续梁跨中正弯矩和端支座负弯矩增大,威胁到连续梁的稳定安全性能。同时较大的轴向变形也会对预测构件的下料长度产生影响,因此要根据轴向变形的计算值来调整预测构件的下料长度,避免出现安全隐患。结构构件的剪力值和侧移也会受到轴向变形的影响,考虑到结构构件竖向变形,得到的结果安全度不够。
3)与低层、多层建筑结构几何变形相比,高层建筑结构的侧向位移也成为控制目标,需要在结构设计中认真重视的关键所在。随着建筑高度的不断增加,侧向位移受水平荷载影响也越来越明显,水平荷载越大,侧向位移也就越大,对结构的安全影响就越大。因此,结构侧向位移要规定一个安全的容许范围,设计计算要将其控制在此范围之内,减少其高层建筑结构的安全影响。
4)结构延性是建筑结构的一项非常重要的设计指标,与低层建筑结构相比,高层建筑结构更具有柔韧性和延展性,建筑结构的整体变形相对来说也会更大一些。在风、地震等外力的水平作用下,高层建筑结构由处于弹性状态,在作用力超过弹性极限的前提下,结构就会进入塑性变形阶段,此时的变形无法恢复,如果作用力继续加大,就会达到破坏阶段,因此为保证结构在进入塑性变形阶段后仍然具有较强的变形能力和持久性,避免出现倒塌,就要采取恰当的措施,增加结构的延展性,避免结构损坏。
5)有抗震设防要求的高层建筑结构设计,在考虑竖向载荷、风载荷等的条件下,还要满足抗震设防的要求,保证结构具备良好的抗震性能,做到小震不坏、大震不倒。
3 高层建筑结构设计分析研究
3.1结构的高度
高层建筑结构的总体高度受制于规范标准,主要体现在抗震规范、高层混凝土技术规范中,对高度、超高等进行了严格的划分。高层建筑结构设计中,之前的一些处理方法和措施都有一定的改变,并且随着高度的增高,结构安全影响因素也增多,若忽视这些问题,就会产生非常大的风险。在实际工程中如果忽略这些问题,在施工图的审查过程将受到限制,导致返工重新设计的现象出现,若进行专家论证继而会影响工期、造价等一连串的规划设计施工,给项目造成很大的麻烦。当建筑高度达到一定的程度时,结构会发生质的变化,如安全指标、荷载、材料、力学模型选择等。
3.2 结构的体系
建筑结构体系有很多种,目前主流的结构形式主要有钢结构和钢筋混凝土结构。对结构体系的选择有直接影响的是结构转换层和加强层的设置,在结构体系之间或者柱间距发生变化时,就需要设计转换层,这时结构的刚度突变会直接影响到相邻的柱构件的受力情况,剪力增大导致很难实现转换层与体系连接处的强柱弱梁。因此,高层建筑在需要转换层或者加强层的结构设计中,结构体系的刚度要低,避免刚度出现太大变化,根据我国的建材市场产品性能和品种,可以适当的选择钢骨混结构、钢管混结构、钢结构等。
3.3 结构的细节问题
重视建筑结构细节的设计是为了保证结构的规则性、剪力墙和嵌固端的设置。采用平面规则的建筑结构方便了设计施工,并且规范要求建筑物采用规则的方案,同时在平面规则性做了严格的限制,就是为了避免在后期的施工图设计中造成不必要的麻烦。短肢剪力墙是设计中受到限制最多的,因此在设计中要避免出现短肢剪力墙,如无法避免,则要符合各种要求。嵌固端一般出现在地下室顶板、人防的顶板位置,它的设计也需要按照规范要求进行,如抗震等级一致的要求、嵌固端上下层的刚度比值的选取、嵌固端和抗震缝的相对位置要求,如不满足规范要求,则会对工程产生严重影响,因此也要重视嵌固端的设计。
3.4 结构的抗震性能
高层建筑结构极易出现扭转效应。当受到地震作用时,会加剧结构的破坏,继而影响到邻近建筑物的稳定。在高层建筑中结构抗震是设计中必不可少的环节。结构的应力集中现象会影响结构的安全性能,常出现在凹凸的拐角处,需要引起一定的重视,避免出现或者采取补救措施来减小这种应力集中现象。高层建筑结构在竖向还常出现刚度突变和薄弱层,因此在进行抗震设计时要注意防震缝的设置,同时它也是设计时容易忽视的问题。高层建筑结构要严格按照抗震设防规范的要求进行。
4 结束语
高层建筑结构设计随着建筑的高度变化越发复杂,相关设计人员要针对高层建筑的结构特点以及主要安全影响因素进行重点考虑,在严格遵守规范要求的基础上进行合理的结构体系的选择、高度的控制,重视结构细节的设计问题,按照抗震的安全标准设计,提高高层建筑在设计上的质量和安全性能。
参考文献:
[1] 刘伟琼. 关于高层建筑结构设计探析[J]. 中国新技术新产品. 2011.
[2] 黄顺河. 高层建筑结构设计的一个实例[J]. 建筑设计管理. 2010.
关键词:高层建筑,结构设计,分析,研究
中图分类号:[TU208.3] 文献标识码:A 文章编号:
1 引言
我国经济的快速发展加快了城市化进程的脚步,同时带动了建筑业的腾飞,建筑技术随之也有了质的飞跃。高层建筑的发展使有限的土地面积得到了最大化的使用,发展无限的空间,缓解了城市用地紧张和城市人口压力,并且高层建筑一跃成为建筑发展的主流导向,俨然成为城市高度发展的标志。高层建筑结构层数多、复杂难度大、施工困难、管理复杂、工序繁多、建设周期长、质量难以保证等诸多的特殊性,给设计施工带来了许多不便。高层建筑能够做到结构功能与外部条件的一致,设计理念先进,能够充分发挥结构的功能并保持經济性的协调,更好的解决构造问题。高层建筑结构总体系与各个分支体系设计和构造处理的原则、力学性质以及工作原理、力学模型和功能等这些高层建筑概念设计的依据都需要在实践中不断的积累经验。本文从高层建筑结构设计的角度出发,针对高层建筑结构的特点和设计问题,分析总结设计的要点,提出相对的控制措施,以期为相关的结构设计人员提供借鉴和参考。
2 高层建筑结构设计特点
相比低层、多层建筑结构,高层建筑结构中结构专业在各个专业中发挥着更为重要的作用,结构体系的选择直接关系到建筑的平面布置、楼层高度、施工技术、机电管道、施工工期、造价成本等,主要设计特点有以下几点:
1)高层建筑结构设计的主要因素是水平载荷,其也是高层建筑结构设计的决定因素,在低层和多层建筑结构中,一般是以重力为代表的竖向载荷对结构设计起着至关重要的作用。在高层建筑结构设计中,虽然竖向载荷对结构存在着重要的影响作用,但是水平载荷更为重要,之所以这样认为,是因为水平力对高层建筑结构安全稳定性的影响程度要远远超过竖向载荷对结构的影响。建筑结构设计中的竖向载荷包括建筑自重以及建筑楼面的使用载荷,它们在竖向构件中作用的轴力和弯矩的大小与建筑高度的一次方成正比关系,而水平载荷对建筑结构产生的倾覆力矩,和由此在竖向构件中产生的轴力,都与建筑高度的二次方成正比关系,因而,对于一定高度的建筑来说,竖向载荷是定值,而水平载荷主要是风载荷和地震水平分力,它们的数值大小是动态的,具有不确定性,对着结构动力学的不同随之产生较大的变化,而随着建筑高度的增加,较小的水平载荷也会产生较大的倾覆力矩和轴力,因此水平载荷是高层建筑安全性能的主要决定性因素之一。
2)建筑结构中,轴向变形对结构的影响主要表现在连续梁支座的安全和预测构件的下料长度方面。在高层建筑结构中,由于竖向载荷较大,柱中的挠度也较大,这样直接影响了连续梁弯矩,导致中间支座附近的负弯矩减小,而连续梁跨中正弯矩和端支座负弯矩增大,威胁到连续梁的稳定安全性能。同时较大的轴向变形也会对预测构件的下料长度产生影响,因此要根据轴向变形的计算值来调整预测构件的下料长度,避免出现安全隐患。结构构件的剪力值和侧移也会受到轴向变形的影响,考虑到结构构件竖向变形,得到的结果安全度不够。
3)与低层、多层建筑结构几何变形相比,高层建筑结构的侧向位移也成为控制目标,需要在结构设计中认真重视的关键所在。随着建筑高度的不断增加,侧向位移受水平荷载影响也越来越明显,水平荷载越大,侧向位移也就越大,对结构的安全影响就越大。因此,结构侧向位移要规定一个安全的容许范围,设计计算要将其控制在此范围之内,减少其高层建筑结构的安全影响。
4)结构延性是建筑结构的一项非常重要的设计指标,与低层建筑结构相比,高层建筑结构更具有柔韧性和延展性,建筑结构的整体变形相对来说也会更大一些。在风、地震等外力的水平作用下,高层建筑结构由处于弹性状态,在作用力超过弹性极限的前提下,结构就会进入塑性变形阶段,此时的变形无法恢复,如果作用力继续加大,就会达到破坏阶段,因此为保证结构在进入塑性变形阶段后仍然具有较强的变形能力和持久性,避免出现倒塌,就要采取恰当的措施,增加结构的延展性,避免结构损坏。
5)有抗震设防要求的高层建筑结构设计,在考虑竖向载荷、风载荷等的条件下,还要满足抗震设防的要求,保证结构具备良好的抗震性能,做到小震不坏、大震不倒。
3 高层建筑结构设计分析研究
3.1结构的高度
高层建筑结构的总体高度受制于规范标准,主要体现在抗震规范、高层混凝土技术规范中,对高度、超高等进行了严格的划分。高层建筑结构设计中,之前的一些处理方法和措施都有一定的改变,并且随着高度的增高,结构安全影响因素也增多,若忽视这些问题,就会产生非常大的风险。在实际工程中如果忽略这些问题,在施工图的审查过程将受到限制,导致返工重新设计的现象出现,若进行专家论证继而会影响工期、造价等一连串的规划设计施工,给项目造成很大的麻烦。当建筑高度达到一定的程度时,结构会发生质的变化,如安全指标、荷载、材料、力学模型选择等。
3.2 结构的体系
建筑结构体系有很多种,目前主流的结构形式主要有钢结构和钢筋混凝土结构。对结构体系的选择有直接影响的是结构转换层和加强层的设置,在结构体系之间或者柱间距发生变化时,就需要设计转换层,这时结构的刚度突变会直接影响到相邻的柱构件的受力情况,剪力增大导致很难实现转换层与体系连接处的强柱弱梁。因此,高层建筑在需要转换层或者加强层的结构设计中,结构体系的刚度要低,避免刚度出现太大变化,根据我国的建材市场产品性能和品种,可以适当的选择钢骨混结构、钢管混结构、钢结构等。
3.3 结构的细节问题
重视建筑结构细节的设计是为了保证结构的规则性、剪力墙和嵌固端的设置。采用平面规则的建筑结构方便了设计施工,并且规范要求建筑物采用规则的方案,同时在平面规则性做了严格的限制,就是为了避免在后期的施工图设计中造成不必要的麻烦。短肢剪力墙是设计中受到限制最多的,因此在设计中要避免出现短肢剪力墙,如无法避免,则要符合各种要求。嵌固端一般出现在地下室顶板、人防的顶板位置,它的设计也需要按照规范要求进行,如抗震等级一致的要求、嵌固端上下层的刚度比值的选取、嵌固端和抗震缝的相对位置要求,如不满足规范要求,则会对工程产生严重影响,因此也要重视嵌固端的设计。
3.4 结构的抗震性能
高层建筑结构极易出现扭转效应。当受到地震作用时,会加剧结构的破坏,继而影响到邻近建筑物的稳定。在高层建筑中结构抗震是设计中必不可少的环节。结构的应力集中现象会影响结构的安全性能,常出现在凹凸的拐角处,需要引起一定的重视,避免出现或者采取补救措施来减小这种应力集中现象。高层建筑结构在竖向还常出现刚度突变和薄弱层,因此在进行抗震设计时要注意防震缝的设置,同时它也是设计时容易忽视的问题。高层建筑结构要严格按照抗震设防规范的要求进行。
4 结束语
高层建筑结构设计随着建筑的高度变化越发复杂,相关设计人员要针对高层建筑的结构特点以及主要安全影响因素进行重点考虑,在严格遵守规范要求的基础上进行合理的结构体系的选择、高度的控制,重视结构细节的设计问题,按照抗震的安全标准设计,提高高层建筑在设计上的质量和安全性能。
参考文献:
[1] 刘伟琼. 关于高层建筑结构设计探析[J]. 中国新技术新产品. 2011.
[2] 黄顺河. 高层建筑结构设计的一个实例[J]. 建筑设计管理. 2010.