论文部分内容阅读
针对循环流化床(CFB)锅炉复杂特性下建模困难的情况,借助神经网络良好的非线性映射能力,利用山西某电厂300MW循环流化床机组的运行数据,研究了锅炉燃烧过程的主要参数关系,建立了给煤对主汽压力以及一、二次风对床温参数的非线性动态辨识模型。仿真结果显示预测与实际值误差较小,说明所建立的模型能反映研究对象的实际运行状况,预测模型可以作为下一步预测控制的基础。