论文部分内容阅读
This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistance-area product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 × 1015 cm-3 in the active region is believed to have the best overall performances.
This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs / GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistance-area product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. which optical its performance is almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 × 10 15 cm -3 in the active region is believed to have the best overall performances.