【摘 要】
:
高维多目标连续优化问题已得到广泛研究,而高维多目标组合优化问题的进展相对较小,虽然人工蜂群(Artificial Bee Colony,ABC)算法已成功应用于多种生产调度问题,但很少被用来
【机 构】
:
湖北大学计算机与信息工程学院,武汉理工大学自动化学院
【基金项目】
:
国家自然科学基金(61803149)
论文部分内容阅读
高维多目标连续优化问题已得到广泛研究,而高维多目标组合优化问题的进展相对较小,虽然人工蜂群(Artificial Bee Colony,ABC)算法已成功应用于多种生产调度问题,但很少被用来求解高维多目标调度问题,而且高维多目标调度自身的研究进展也非常小。针对高维多目标柔性作业车间调度问题,文中提出了一种新型ABC算法以同时优化最大完成时间、总延迟时间、总能耗和机器总负荷。与常规柔性作业车间调度问题不同,上述问题考虑了总能耗,使其成为绿色调度问题。新型ABC具有明显不同于现有ABC算法的新特点,其跟随蜂(
其他文献
随着现代化城市进程的不断加快,土木工程施工数量也在不断增加,这无疑给了土木施工单位一个良好的发展机会。随着人们物质生活质量的不断提升,人们对于生活质量的追求也逐渐
大数据时代的数据信息呈现持续性、爆炸性的增长,为机器学习算法带来了大量监督样本。然而,这对信息通常不是一次性获得的,且获得的数据标记是不准确的,这对传统的分类模型提
通过精确的电力负荷预测,智能电网可以提供比传统电网更高效、可靠和环保的电力服务。现实生活中,电力负荷数据往往存在着与历史数据较高的时间相关性,而传统的神经网络却很
介绍了一种基于图像DCT域的信息隐藏算法。该算法将秘密信息嵌入到对图像信号频域进行DCT变换后的系数矩阵中;然后用MATLAB工具实现了算法。实验结果表明该算法简单、容易实
点云数据的分类和语义分割在自动驾驶、智能机器人、全息投影等领域中有着重要应用。传统手工提取点云特征的方式,以及将三维点云数据转化为多视图、体素网格等数据形式后再进行特征学习的方式,都存在处理环节多、三维特征损失大等问题,分类和分割的精度较低。目前可以直接处理点云数据的深度神经网络PointNet忽略了点云的局部细粒度特征,对复杂点云场景的处理能力较弱。针对上述问题,提出了一种基于动态图卷积和空间金
随着软件定义网络(Software Defined Network,SDN)技术的快速发展,互联网必将长期处于传统网络设备和SDN设备共存的混合SDN网络状态。混合SDN网络中的路由节能研究是一项关键