论文部分内容阅读
To study the osteogenic ability of tissue-engineered bone constructed by compounding zinc-sin-tered bovine cancellous bone with rabbit marrow stromal cells ( MSCs ) in vivo, the zinc- sintered bovine cancellousbone of beta-tricalcium phosphate (TCP) type was prepared by sintering the fresh calf cancellous bone twice andthen loading it with zinc-ion. The rabbit MSCs were cultured, induced and seeded onto the zinc- sintered bovine can-cellous bones. The tissue-engineered bones were then implanted into the rabbits’ bock muscles. The newly formedbone tissues were observed by histological methods and the areas of new osseous tissues were measured at the end ofthe 4 th and 8 th week. The zinc-sintered bovine cancellous bones alone were implanted on the other side as control.The osteogenic activity of MSCs was identified by alkaline phosphatase (ALP) staining and calcification nod chi-nalizarin staining. At the end of 4th week, a small amount of new bone tissues was observed. At the end of 8thweek, there were many newly formed bone mature tissues. Moreover, the area of the latter was significantly largerthan that of the former( P<0.01), while in the control group there was no new bone formation. The tissue-engi-neered bone, which was constructed by combining zinc-sintered bovine cancellous bone with MSCs, has satisfactoryosteogenic capabilities in vivo.