基于改进双流卷积递归神经网络的RGB-D物体识别方法

来源 :光电工程 | 被引量 : 0次 | 上传用户:hualing_xue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高基于图像的物体识别准确率,提出一种改进双流卷积递归神经网络的RGB-D物体识别算法(Re-CRNN)。将RGB图像与深度光学信息结合,基于残差学习对双流卷积神经网络(CNN)进行改进:增加顶层特征融合单元,在RGB图像和深度图像中学习联合特征,将提取的RGB和深度图像的高层次特征进行跨通道信息融合,继而使用Softmax生成概率分布。最后,使用标准数据集进行实验,结果表明,Re-CRNN算法的RGB-D物体识别准确率为94.1%,较现有基于图像的物体识别方法有显著的提升。
其他文献