试析初中数学如何渗透数学思想和数学方法

来源 :未来英才 | 被引量 : 0次 | 上传用户:mnwang2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,因此,数学思想对于学好数学学科是很重要的。
  关键词:初中数学;数学思想;渗透
  数学思想是数学的灵魂,数学方法是数学的行为。提高学生的数学素质,指导学生学习数学方法,毋庸置疑,让学生紧紧抓住掌握数学思想方法是这一数学链条中最重要的一环。本文结合以下几点进行说明;
  一、渗透“方法”,了解“思想”
  由于初中学生数学知识比較贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础,因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题的能力。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。
  例如,在探究完“数轴”教学后,可以引出“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”;而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出、难点分散,又向学生渗透数形结合的思想,令学生易于接受。
  在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等错误做法。
  再如,在学习“二次不等式解集”时就可以结合二次函数图像来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用数形结合方法,从而比较顺利地完成新旧知识的过渡。
  二、初中阶段应渗透的主要数学思想方法
  初中数学教材中主要蕴涵下面几种数学思想方法,平时教学过程中要将这些思想与方法渗透于教学过程中。运用时不仅能够说出每种思想方法,还能够较准确的把握它们的本质。
  首先,分类讨论的思想方法。分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是一个重要的数学思想,又是一个重要的数学方法,能克服思维的片面性,防止漏解。
  其次,类比的思想方法。类比是根据两个或两类对象间有部分属性相同,而推出它们某种属性也相同的推理形式,被称为最有创造性的一种思想方法。
  再次,数形结合的思想方法。数形结合的思想方法是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
  最后还要有整体的思想方法。整体的思想方法就是考虑数学问题时不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻地观察,从宏观上、整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法。
  三、初中数学教学中数学思想和方法渗透的原则
  首先,渗透“方法”,了解“思想”。教材的编写尊重初中学生的个性特点,初中生抽象思想能力也较为薄弱,不可能将数学思想方法作为一门独立的课程,只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。所以教师要认识到教材编写的意图,要重视数学概念、公式、定理、法则的教学,更要重视知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开数学思维与方法的训练,发展他们的科学精神,形成获取、发展新知识,运用新知识解决问题的能力。例如,在学习有理数的时候,可用小学所学的“数”进行类比。经过多次重复与渗透,使学生真正理解、掌握类比的方法,从而灵活运用到今后新知识的学习与问题的解决之中去,同时也提高自己的数学思维能力。
  其次,训练“方法”,理解“思想”。渗透数学思想和数学方法不是一蹴而就的,必须遵循循序渐进的原则,在知识学习的过程中提炼数学思想方法。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,通过具体数字到字母的过程,必须在大量数据的练习中总结归纳得到。这就是从特殊到一般的方法,在得出用a表示底数,用m表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。这一过程需要教师努力挖掘教材中进行数学思想和数学方法渗透的条件和因素,对数学知识从思想方法的角度进行认真分析、系统归纳、科学概括,形成全面完整的认知和梳理。
  再次,掌握“方法”,运用“思想”。数学思想与方法的运用是学习数学的最终目的,这也是新课程改革背景下,教师认真研究的课题。数学思想方法与数学知识的获得同样有一个循序渐进的过程,必须将简单数学知识运用于实践过程中,才能形成必備的技能。通过技能的学习使学生形成自觉运用数学思想方法的意识,建立起学生自我的“数学思想方法系统”,这需要一个反复训练、不断完善的过程。比如,类比的数学方法的渗透,教师在新概括提出、新知识点的讲授过程中,学生易于理解和掌握,然后必须通过实践,才能让学生真正理解和掌握,如果配合针对性的练习,学生通过亲身体验效果会更好。
  数学思想与方法渗透在知识的学习过程中,教材并没有直接给予列出来,教学中要适时恰当地对数学方法给予提炼和概括,形成自己的理解。数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式融于数学知识的体系中,要使学生把这种思想内化成自己的观点并应用它来解决问题,就要努力把各种知识所表现出来的数学思想方法表层化。要重视引导学生对章节知识中蕴藏的数学思想方法加以归纳和概括,提高数学思想方法的综合运用能力。
其他文献
电力设备运检是电力安全生产的必要环节,其合格率将直接影响电力系统稳定运行.普遍的运检方式多依赖于传统图纸及人的经验判断,有较大的不便性和随机性.基于HoloLens设备,在u
为解决传统变压器故障诊断方法存在的诊断精度低、实时监测效果差的问题,提出构建基于自适应神经网络的变压器健康诊断模型.通过构建变压器状态量数据的时间序列自回归模型,
  人类监测多年冻土的历史不超过100年,而且连续、长期监测的数据很少,相对于多年冻土对气候变化响应的时间尺度,目前监测的数据远远不能描述其退化的过程。鉴于此,从多年冻土
  气溶胶对区域环境和气候有着重要影响.为定量描述人为气溶胶对于气候系统能量平衡的影响,本研究利用模拟气溶胶资料和中科院大气物理研究所大气模式,估算了东亚区域人为
会议
爱马仕经典款瓷制餐具,大方高贵,很体现生活品味,也是相当不错的送礼之选。 Hermes classic porcelain tableware, generous and noble, it reflects the taste of life, bu
梁体升降过程中一旦发生失衡现象,将会很容易导致质量和安全事故的发生.为此,研究一种高架桥梁施工中梁体升降液压平衡自动控制方法.该方法分为两部分:先是以控制速度为目标,
  Researches on soil CO2 fluxes in alpine meadow of the permafrost regions could be facilitated to accurately annual total fluxes of the soil CO2 in the Qingh
会议
胶接工艺缺陷对单搭胶接接头的拉伸剪切性能有着重要的影响。为了研究不同单搭接胶接层厚度对不同材质复合材料层合板胶接性能的影响规律,通过喷水穿透法超声C扫描对试样的剪