论文部分内容阅读
考虑如下拟线性椭圆方程{-u″+a(x)u-k(u2)″u=b(x)|u|q-2u,x∈R,u→0,|x|→∞,(*)当k〉0,4≤q〈∞,且正函数a(x),b(x)满足一定假设条件下,克服该椭圆方程(*)的失紧性,利用Ekeland变分原理证明Palais-Smale序列的弱极限就是问题(*)的非平凡解.最后利用极值原理证明非平凡解是正解.