论文部分内容阅读
单目视觉惯性SLAM系统通过追踪人工设计的点特征来恢复位姿,如Shi-Tomasi, FAST等。然而光照或视角变化等挑战性场景中人工特征提取鲁棒性差,易导致位姿计算精度低甚至失败。启发于SuperPoint网络在特征提取的强鲁棒性,提出一种基于改进SuperPoint网络的单目VINS系统—CNN-VINS,旨在提升挑战性环境下VINS系统的鲁棒性。主要贡献包括:提出改进SuperPoint特征提取网络,通过动态调整检测阈值实现图像特征点均匀检测和描述,构建鲁棒精确的特征关联信息;将改进Super