面向碳中和电力系统转型的电氢枢纽灵活性应用

来源 :电力建设 | 被引量 : 0次 | 上传用户:seacowp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国“碳达峰”、“碳中和”目标将加速电力系统向以风、光发电为主的高比例新能源电力系统的演变进程,保障电力系统灵活运行是高比例新能源电力系统转型的核心.氢作为一种清洁、零碳、多功能的二次能源载体,可与电能相互转换,并长期高效储存,在高比例新能源电力系统灵活性调节方面将扮演不容忽视的角色.系统分析了未来各阶段电力系统特征演变及灵活性资源需求,电-氢相互转换及氢储存技术,研究和展望了电-氢枢纽在大规模可再生能源电力系统中参与灵活性调节的应用场景.
其他文献
新一代心电图(Electrocardiography,ECG)系统中,可以使用可穿戴设备来监测人体生理信号。心电图信号是一种生物医学信号,基本上与人体心脏的电活动相对应,根据其波形可以初步判断人体是否存在疾病。本文首先对ECG信号进行了预处理,然后使用自适应阈值对QRS波进行定位,最后使用支持向量机对心电信号进行分类。基于MIT-BIH数据库的实验表明,该方法的敏感度达99.65%,正预测率达99.41%。
为满足电网企业成本精益管理需求,完善电网运维检修作业标准成本体系,针对我国地区间经济水平、管理水平及自然环境差异大的问题,开展电网作业标准成本差异化配置算法研究。首先,结合电网作业标准成本的应用机制,确定了基于决策与评价实验室法(decision making trial and evaluation laboratory,DEMATEL)和组合赋权法的作业标准成本差异化配置算法;然后,以变电站检修业务为例,依据实际数据,实现了作业标准成本的差异化配置;最后,基于J-T非参数检验法,对差异化配置结果的合理
针对高密度、分散化、全网化电力电子非线性设备导致谐波污染难以有效估计问题,提出一种数据驱动的配电台区谐波污染源群体谐波排放水平建模方法。考虑多种谐波源模型特点和适用性,选取谐波Norton等效模型对谐波源负荷设备进行建模,形成设备典型谐波排放表征。利用非侵入式负荷监测(non-intrusive load monitoring,NILM)技术分解用户用电数据,得到设备各时刻启停状态,进而得到各时刻设备总开启数量。通过马尔科夫链(Markov chain,MC)模拟用电设备开启数量在时序上动态变化,建立用户
本文提出了一种相机快速标定方法,使用一个平面标定板,仅拍摄一幅图像,就能完成相机标定。与通用的相机标定方法相比,可以减少拍摄图像及计算相机多个参数初值的麻烦,提高了相机标定的效率,尤其适用于多相机同时标定的情况。在计算相机内参时,使用Levenberg-Marquarat方法优化求解。实验结果表明,本算法速度快且精度较高,可应用于机器视觉研究、工业三维测量等多个领域的摄像机标定。本方法也可以选择拍
针对目前电压暂降治理方案未考虑治理设备标准容量与定制容量单位成本的差异,分析了不间断电源(uninterruptible power supply,UPS)与动态电压恢复器(dynamic voltage regulator,DVR)治理设备不同容量(定制和标准化)与初始成本之间的关系。同时为合理量化用户电压暂降治理投资客观需求,基于用户不同敏感设备经历单次暂降事件造成的经济损失,提出更合理的用户总体电压暂降严重程度度量方法。进一步地,结合用户投资能力,采用前景理论量化用户电压暂降治理投资意愿,得到符合用
传统的蒸馏学习仅通过大网络对轻量网络进行单向蒸馏,不但难以从轻量网络的学习状态中得到反馈信息,对训练过程进行优化调整,同时还会限制轻量网络的特征表达能力。本文提出结合自身多级注意力上下文信息进行自我学习优化的方法(MAD,Multi Attention Distillation),以自监督的方式使自身成熟的部分约束不成熟部分,即浅层可以从深层中提取有用的上下文信息,让浅层特征学习高层特征的表达,从
在去年所有火灾的起因中,电气引发的火灾占比高达三成,造成的经济损失更是无法估量,如何减少电气火灾发生的频率一直是一个难题。本文先是采用自组织竞争神经网络进行电气回路的故障判定,有效的判断电气回路是否存在火灾隐患;然后采用SOM自组织神经网络对存在火灾隐患的回路进行故障分类,达到了进一步细化故障的目的,做到了提前预警电气火灾,减少电气火灾的发生频率。
车牌识别在智能交通系统中有着广泛的应用,具有重要的意义,是图像识别领域一个重要而富有挑战性的研究课题。目前的许多方法只能适应在特定的环境下,才能完成正常的识别。而在现实复杂的场景中的鲁棒性不高。本文提出了一种在复杂的场景中鲁棒的车牌识别方法。首先,通过EfficientDet网络检测车辆所在的位置,从而缩小车牌位置的搜索范围,通过失真校正的车牌检测网络,检测并校正同一幅图像中一个或多个严重扭曲或倾
随着绿色出行理念的不断深入,电动汽车保有量逐年增长,而大规模的电动汽车充电负荷将对配电网产生不利影响.基于该背景,文章提出了一种计及充放电管理的充电站规划模型.首先,
针对传统以及基于深度学习的脑肿瘤MR图像分割方法存在精度低、特征信息丢失等问题,提出一种多尺度特征融合全卷积神经网络的脑肿瘤MR图像分割算法。该算法首先对脑肿瘤MR图像的4种模态进行归一化处理;将得到的结果通过多尺度特征融合全卷积神经网络(MFF-FCN)。该网络是在全卷积神经网络的基础上,引入5×5、7×7大小的卷积核作为其它2种通路,以提高模型的特征信息提取能力。实验结果表明,MFF-FCN网