论文部分内容阅读
运用独立分量分析(ICA)提取信号高阶统计特征的方法,提出一种新的利用信号自身统计特性的信噪区分方法,由于ICA变换可以增大语音和噪声的统计性差别,故在ICA域内可以有效区分语音和噪声。在此基础上提出了ICA能量(ICAE)滤波ICAE(FICAE)特征来进行端点检测。实验表明,结合FICAE与ICAE的端点检测方法在不同信噪比时具有一定的稳定性,在很低信噪比下也能有效检测出语音的端点,显示了良好的抗噪性能,为强背景噪声下弱信号的端点检测提供了新的途径。