论文部分内容阅读
为了对各种迭代无味卡尔曼滤波(iterated unscented Kalman filter,IUKF)算法的应用及性能表现给出较为全面、客观的评价,分别导出并探讨了3种IUKF算法之间的内在联系。多种情况下的仿真应用表明,当观测噪声不太大,且该非线性系统状态的后验密度为可用高斯分布很好近似的单峰形式时,或者说是引起系统非线性的状态量是完全瞬时可观测时,选用恰当的IUKF算法,通过2~3次迭代,就可以在保持滤波一致性的条件下,进一步获得显著的精度收益;否则,IUKF相对于无味卡尔曼滤波(unscente