论文部分内容阅读
为了同时保证算法的不可感知性与鲁棒性,提出了一种新的支持向量回归机音频水印算法.该算法首先对音频进行小波变换,然后选取稳定的低频系数的相邻均值向量、左邻域斜率向量、右邻城斜率向量作为支持向量回归机训练模型,利用支持向量回归机训练模型嵌入和提取水印信息.仿真实验表明,算法对常规的信号处理及攻击均具有较好的鲁棒性,与经典的基于小波变换的量化算法相比,具有很好的不可感知性,另外,在水印检测时不需要原始音频,实现了水印的盲检测.