论文部分内容阅读
针对现有以雷达技术和红外热成像技术为代表的HOV(High occupancy vehiclelane)车道车辆乘员数量检测方法可靠性差、准确率低等问题,提出一种基于多光谱红外图像与改进Faster R-CNN(Region-Convolutional Neural Networks)的车辆乘员数量检测方法。通过多光谱红外成像系统获得汽车内部空间图像,结合Faster R-CNN深度学习算法实现乘员数量检测,通过采用全卷积网络结构、多尺度特征预测、使用ROI-Align代替ROI-Pooling等方