论文部分内容阅读
为了优化压缩采样匹配追踪算法的性能,提出一种压缩采样修正匹配追踪贪婪自适应算法.该算法采用了具有理论保证的模糊阈值预选方案以避免预选时使用信号的先验信息,设置了初次裁剪门限以减少不必要的迭代,改进了裁剪方式以尽可能地提高重构精度,同时避免了裁剪阶段使用先验信息,最终实现了可压缩信号的自适应重构.仿真结果表明:在同等稀疏条件下实现了精确重构,该算法与原算法相比运算速度提高了2倍,所需观测值个数少I%,并且在稀疏度较高的情况下,该算法对噪声的抗干扰能力也优于原算法.