论预算会计的现状及发展

来源 :城市建设理论研究(电子版) | 被引量 : 0次 | 上传用户:joey_don
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国经济改革的深入发展和政府职能的不断转变,对预算会计的发展提出了更多更高的要求。但我国现行的预算会计体系在长期的运行中出现了诸多问题,已不能很好地适应新形势下预算会计发展的需要。因此,在新会计准则下,如何弥补现有预算会计体制的缺陷,创新会计制度,推进预算会计制度改革,是当前工作的重要内容。本文首先对预算会计进行了概述,对其概念和组成体系做了深入说明,然后详细说明了当前预算会计发展中的问题,最后重点阐述了我国预算会计未来的发展思路。
其他文献
初值含真空的光滑大解的适定性和奇性理论是流体力学方程组数学理论的一个重要分支。本文主要在流体粘性系数为密度的幂律的情形下,对高维的可压等熵Navier-Stokes方程组的Cau
球面稳定同伦群的计算是代数拓扑中同伦论的中心问题,也是长期以来比较困难的数学问题之一。设A是mod p Steenrod代数(p为素数),S为p局部化的球谱。A*为A的对偶,P表示A的由循
小波分析是在应用数学基础上发展起来的一门新兴学科,近二十年来得到了飞速的发展。在小波分析中,如何求解细分函数以及研究其相关良好性质和如何由己给细分函数出发构造小波函
本文一共四章。第一章介绍一些图论的基本概念和控制参数的预备知识。然后,我们在第二章给出了关于树图的成对控制数的研究,在第三章中对给出了成对控制边临界图的一些研究工作
基于粒子物理学中的问题,F.J.Dyson于1962年猜测出一个常数项恒等式,此等式称为Dyson猜想。在Dyson的文章发表之前,其猜想分别被Gunson与诺贝尔奖获得者Wilson给予了证明。之
本文主要讨论非线性椭圆型方程边值问题{M±λ,Λ(D2y)+f(|x|y)=0 in BR,y=0 on(e)BR,的径向对称解,其中M±λ,Λ表示Pucci算子,0
本文讨论如下非线性椭圆型方程边值问题△pu+x-x0|r|u|q-1u=0,xΕΩ u|аΩ=0 (0-1)r≥0,Ω是平面上的区域,△pu=div(|▽u|p-2▽u),аΩ是Ω的边界,x=(x1,x2),x0是Ω的中心. 当p=2