论文部分内容阅读
针对高分辨率SAR(合成孔径雷达)图像噪声强,目标分割难度大的特点,提出一种改进的脉冲耦合神经网络(pulse coupled neural network,PCNN)模型的SAR图像分割算法。首先根据SAR图像中相干斑噪声的特点,采用复小波进行去噪。然后,在传统PCNN模型的基础上,对神经元的输入信号,尤其是链接系数和阈值的非线性衰减子因子进行了改进和简化,同时对链接强度系数β进行理论上的近似推导,并减少人工设置的参数。最后,通过最佳阈值对其结果进行二值化处理得到感兴趣的目标图像。实验结果表明,改