论文部分内容阅读
根据模拟系统故障检测原理,采用神经网络与数据融合相结合的方法进行模拟电路故障诊断,提出了一种新型的基于D-S证据神经网络的故障检测与诊断方法.应用D-S证据理论对径向基函数网络进行了修正,用具有一个输入层、两个隐含层和一个输出层的神经网络实现.各个证据体的基本概率赋值的获取是D-S证据理论在实际应用中的难点问题,本方法中采用的是根据输入模式与原型模式之间的相似度以及原型模式的类别隶属度来确定基本概率赋值.借助神经网络自学习的功能,实现对类别隶属度的最优化.结果表明该方法能快速有效地进行故障诊断中大量数据的