基于深度学习的显著性目标检测方法综述

来源 :电子学报 | 被引量 : 0次 | 上传用户:zhaoxin1987212
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综述了将深度学习引入显著性目标检测领域之后的研究成果.首先,从三个方面对显著性目标检测方法进行了论述:稀疏检测方法,密集检测方法以及弱监督学习下的显著性目标检测方法.然后,简要介绍了用于显著性目标检测研究的主流数据集和常用性能评价指标,并对各类主流模型在三个使用最广泛的数据集上进行了性
其他文献
属性约简是粗糙集中的一个重要研究方向.本文从8个方面对基于粗糙集的属性约简算法进行归纳,即:不完备决策信息表,不相容决策信息表,连续型属性决策信息表,动态决策信息表,有序型属性决策信息表,基于粗糙扩展模型的属性约简,基于属性重要度的属性约简,结合智能优化算法的属性约简,这对进一步深入研究粗糙集的属性约简算法具有积极意义.