基于机器学习的电热防除冰表面温度变化趋势预测

来源 :装备环境工程 | 被引量 : 0次 | 上传用户:shenkefang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对飞机部件周期控制律电加热防除冰的应用,提出基于机器学习以预测电加热防除冰表面温度的变化趋势。依靠大型结冰风洞及其电加热防除冰控制系统完成防除冰试验,获得有效的试验数据,以通、断电周期为分割单元,将试验数据划分成验证集和训练集。根据电热防除冰过程的换热情况,构建样本的特征参数,利用机器学习的有监督学习方式,选择KNN近邻回归算法和局部线性加权回归算法预测温度变化率,再转换为温度,得到的温度变化与测量数据的线性相关性达到80%以上的高相似度结果,表明使用机器学习可快速预测电热防除冰部件的表面温度变化趋势,
其他文献
大数据时代,论坛上用户的看法、倾向、观点和争论形成了大量数据。对这些能表达作者情绪的数据进行挖掘,有助于相关人员对信息的理解、把控,亦会对决策形成直接影响。为此,关注论坛情感挖掘十分重要。从论坛数据挖掘相关技术的概念和意义出发,重点讨论了论坛情感挖掘中基于情感词典和基于机器学习两种方法的研究现状,对每种方法的适用任务、不足之处、改进方案、发展趋势等进行对比和阐述。给出论坛情感挖掘领域尚待解决的难题与挑战,并对该技术未来的发展方向做出预测。
图像超分辨率重建旨在从低分辨率图像恢复出高分辨率清晰图像。阐述了典型图像超分辨率重建方法的思想,从上采样位置和上采样方法、学习策略、损失函数等维度,对典型和最新的基于深度学习的图像超分辨率重建算法进行了评述,分析了最新的发展现状,并对未来发展趋势进行了展望。