完备的无参数近邻保持及最大化非近邻算法

来源 :计算机应用 | 被引量 : 1次 | 上传用户:a415013145
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无参数保持投影算法无需参数设置且识别性能稳定,但算法不能有效地保持样本的局部结构,且忽略了非局部样本所起的作用,而且存在着小样本(SSS)问题,为此提出了一种完备的无参数近邻保持及最大化非近邻算法。算法以样本间余弦距离0.5为分界点将样本分成近邻及非近邻样本,为了充分利用近邻样本及非近邻样本,分别构造了近邻散度矩阵及非近邻散度矩阵,因此算法的目标函数就是求取能够最小化近邻散度矩阵的同时,最大化非近邻散度矩阵的投影矩阵。对于目标函数的求解,可先将高维样本通过主成分分析(PCA)算法降至一个低维的子空间
其他文献
通过控制高频头的AGC电压,能有效解决高频头AGC范围过小的不足之处。针对不同的高频头,只需要调整系统中的一两个参数就可实现AGC范围扩大,在以后做方案时有很多的器件可供选择。
由于已有的最近邻查询方法无法直接处理受限区域内的单纯型连续近邻链查询问题,针对受限区域和障碍物的复杂性,详细研究了受限区域内无障碍物和有障碍物环境下的单纯型连续近邻链查询方法,分别提出了VOR_NB_CRSCNNC算法和VOR_CB_CRSCNNC算法。算法基于计算几何中的Voronoi图和判定圆域对空间数据对象进行预先筛选和计算,每次查询仅需考虑落在数量较少的Voronoi多边形和判定圆域内的数