论文部分内容阅读
鉴于机场噪声烦恼度模型的模糊规则量较大,采用传统的基于梯度的模糊神经学习算法存在计算量大、收敛速度慢、学习效率低的问题,提出一种基于模糊神经网络的机场噪声烦恼度模型混合学习方法。基于聚类思想,重新对模糊集合进行分组,采用先粗学习后细学习的间接学习方法;改进传统的基于梯度的模糊神经学习算法,将该算法应用到间接学习过程中,即混合学习方法。实验结果表明,该混合学习方法可以快速收敛,缩短学习时间,减少误差求解过程中的计算量,提高模型的学习效率。