论文部分内容阅读
针对公开数据集训练所得模型无法直接应用于临床上不同设备的辅助诊断,而临床获取的数据又缺少足够人力进行标注的问题,提出了一种面向皮肤病临床影像识别的小样本域自适应方法。以ISIC皮肤病公开数据集作为标签已知的源域,以实际临床采集的数据作为待识别的目标域,通过医生对极少量临床数据进行标注,建立由卷积神经网络实现的特征提取器和分类器,构建小样本域自适应模型。引入最大相关熵准则来提高识别模型的精度和泛化能力,在每类只有少量带标签目标域样本的情况下,通过交替最大最小化条件熵,在提取区别性特征的同时减小不同域之