论文部分内容阅读
用小波分解和自适应神经模糊推理系统(ANFIS)相结合的方法,建立了西太平洋副热带高压形态指数月、季时间尺度的集成预报模型.由于小波分解可在信号的频域-时域内自由伸缩,准确地分解和重构带通、低通信号,因而能将复杂的副高指数时间序列分解为相对简单的周期分量信号,既简化了系统结构,又突出了信号特征.随后基于ANFIS模糊系统的非线性、容错性、自适应性和联想学习功能,建立各分量信号的独立预报模型,最后对分量预报结果进行集成.试验结果表明,该方法在保留预报对象主要特征的前提下,有效降低了预报难度,预报准确率和预报