论文部分内容阅读
为了满足在线目标跟踪算法的实时性需求并提高算法的稳健性,提出一种基于高置信度更新策略的相关滤波跟踪算法。在目标区域提取、融合多特征,以构建稳健的外观表达,并利用投影矩阵对特征进行降维,以提高算法的运行效率;通过相关滤波器寻找最大响应值,从而快速定位目标;利用最大响应值和平均峰值相关能量指标,设计了一种高置信度更新策略。结果表明:所提算法在大规模公开数据集上取得了较高的跟踪精度和成功率,平均跟踪速度达到122.3 frame/s。