论文部分内容阅读
线性规划优化分析在经济管理等领域有着广泛的应用。当线性规划约束条件的右端向量在一定范围内变化时,目标函数的最优值是右端向量的一个复杂的分片线性函数,但通常难以给出分析表达式。应用多项式回归、径向基函数、Kriging法及多项式回归+Kriging法这四种元模型方法,能快速预测最优值函数。通过仿真实验,对这四种形式的元模型作较全面的比较分析。数值实验的结果表明,用次数较少的实验设计,后三种方法都具有较高的拟合精度;特别地,多项式回归+Kriging法不仅拟合精度高,而且还能用一个二阶多项式给出最优值函数的一