论文部分内容阅读
本文提出了奇异值分解(SVD)和线性鉴别分析(LDA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和LDA之间有着明显的互补之处,LDA在fisher准则下能最大限度地把不同的类别区分开来,但作为一种子空间方法,LDA敏感于位移、旋转等几何变换。而作为一种代数特征提取方法的SVD则具有位移、旋转不变性等优点。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的LDA方法)。在ORL数据库上的实验表明,SV