论文部分内容阅读
针对战场通信对抗智能决策问题,该文基于整体对抗思想提出一种基于自举专家轨迹分层强化学习的干扰资源分配决策算法(BHJM),算法针对跳频干扰决策难题,按照频点分布划分干扰频段,再基于分层强化学习模型分级决策干扰频段和干扰带宽,最后利用基于自举专家轨迹的经验回放机制采样并训练优化算法,使算法能够在现有干扰资源特别是干扰资源不足的条件下,优先干扰最具威胁目标,获得最优干扰效果同时减少总的干扰带宽。仿真结果表明,算法较现有资源分配决策算法节约25%干扰站资源,减少15%干扰带宽,具有较大实用价值。