论文部分内容阅读
摘要:重新审视了钢铁吸氧腐蚀实验的过渡期现象。从金属表面显微尺寸的电化学不均匀性、电解质溶液中溶解氧的浓差等角度,对盐水滴实验出现过渡期现象的成因进行了文献调研分析与实证探究,认为钢铁发生盐水滴腐蚀需经历四个阶段,此结果有助于增进一线教师对金属电化学腐蚀原理与局部腐蚀原理的理解。
关键词:钢铁吸氧腐蚀;盐水滴实验;过渡期现象;实验探究
文章编号:1005–6629(2016)11–0060–04 中图分类号:G633.8 文献标识码:B
1 问题的背景
金属在潮湿空气里会形成无数微小原电池而被腐蚀。自然条件下,由于金属表面水膜的酸性一般不强且有空气中的氧气不断溶于其中,因此吸氧腐蚀通常是金属主要的腐蚀方式。
实验3 将食盐水煮沸,在密封环境下自然冷却至室温,加入适量的指示剂酚酞与K3[Fe(CN)6]溶液,混匀后备用。重复实验1步骤,约10s盐水滴中心部位只有淡蓝色细线(无小红点!),然后逐渐加深并聚于盐水滴中心区域;约1min盐水滴边缘开始出现粉红色,进而出现图2-b的稳定态现象。
实验4 按图3组装实验装置。将盛放有食盐水的具支锥形瓶在冰水浴中冷却后,向溶液中缓慢地通入氧气并持续较长时间使之饱和,再加入适量酚酞及K3[Fe(CN)6]溶液,获得0℃时高溶解氧的食盐水。当恢复至室温时,食盐水溶液中的氧气将处于过饱和状态。用于实验1操作时,在盐水滴中心部位会出现淡蓝色细线与粉红色小点交错分布的现象,但该电化学腐蚀实验的过渡期现象能持续更长的时间(一般可达到40s以上)。
基于对实验2、实验3与实验4中电化学腐蚀的过渡期现象差异的对比,说明食盐水滴中本身存在的溶解氧含量的高低,直接影响到实验初始阶段出现粉红色小点所持续时间的长短。当食盐水中不含溶解氧(或其含量极低)时,则不会出现粉红色小点与淡蓝色细线的交错分布的现象。
至于实验过渡期出现其他现象的成因,如盐水滴覆盖的铁片表面有淡蓝色细线并逐步向液滴中心区域集聚、加深等,我们可以从金属表面显微尺寸的电化学不均匀性角度去理解。
文献[6,7]表明,金属表面电化学的不均匀性,会使金属材料表面存在微小的电位高低不等的区域,促使电化学腐蚀行为的发生。主要类型有:(1)金属表面化学成分的不均匀性而引起微观电池,如工业铸铁中的石墨、碳钢中的渗碳体Fe3C、纯锌中的铁杂质FeZn7等在腐蚀介质时表面就会形成许多微阳极和微阴极而导致腐蚀(如图4-a);(2)金属组织的不均匀性而构成微观电池,如晶粒与晶界、裂缝(或凹痕)处的腐蚀微电池,晶界及孔隙处作为阳极而优先发生腐蚀(如图4-b);(3)金属表面物理状态(应力分布、形变等)的不均匀性而构成微观电池,如钢铁弯曲处、铆钉头部区域容易优先腐蚀(如图4-c);(4)金属表面膜的不完整而形成微观电池,由于金属表面的钝化膜或镀覆的阴极性金属镀层等存在破损时,该处裸露的金属基体电位较负而作为阳极受到腐蚀(如图4-d)。
[3]徐泓,朱敏,魏明贵.铁粉吸氧腐蚀系列实验的设计及应用[J].化学教学,2015,(4):63~66.
[4]刘先昊,朱海英.钢铁吸氧腐蚀实验的条件优化[J].教学仪器与实验,2008,(108):37.
[5]董小玉,施志斌.对钢铁吸氧腐蚀现象的再讨论[J].教育界,2015,(31):148~149.
[6]陈鸿海主编.金属腐蚀学[M].北京:北京理工大学出版社,1995:15~56.
[7]刘秀晨,安成强主编.金属腐蚀学[M].北京:国防工业出版社,2002:38~64.
关键词:钢铁吸氧腐蚀;盐水滴实验;过渡期现象;实验探究
文章编号:1005–6629(2016)11–0060–04 中图分类号:G633.8 文献标识码:B
1 问题的背景
金属在潮湿空气里会形成无数微小原电池而被腐蚀。自然条件下,由于金属表面水膜的酸性一般不强且有空气中的氧气不断溶于其中,因此吸氧腐蚀通常是金属主要的腐蚀方式。

实验3 将食盐水煮沸,在密封环境下自然冷却至室温,加入适量的指示剂酚酞与K3[Fe(CN)6]溶液,混匀后备用。重复实验1步骤,约10s盐水滴中心部位只有淡蓝色细线(无小红点!),然后逐渐加深并聚于盐水滴中心区域;约1min盐水滴边缘开始出现粉红色,进而出现图2-b的稳定态现象。
实验4 按图3组装实验装置。将盛放有食盐水的具支锥形瓶在冰水浴中冷却后,向溶液中缓慢地通入氧气并持续较长时间使之饱和,再加入适量酚酞及K3[Fe(CN)6]溶液,获得0℃时高溶解氧的食盐水。当恢复至室温时,食盐水溶液中的氧气将处于过饱和状态。用于实验1操作时,在盐水滴中心部位会出现淡蓝色细线与粉红色小点交错分布的现象,但该电化学腐蚀实验的过渡期现象能持续更长的时间(一般可达到40s以上)。

基于对实验2、实验3与实验4中电化学腐蚀的过渡期现象差异的对比,说明食盐水滴中本身存在的溶解氧含量的高低,直接影响到实验初始阶段出现粉红色小点所持续时间的长短。当食盐水中不含溶解氧(或其含量极低)时,则不会出现粉红色小点与淡蓝色细线的交错分布的现象。
至于实验过渡期出现其他现象的成因,如盐水滴覆盖的铁片表面有淡蓝色细线并逐步向液滴中心区域集聚、加深等,我们可以从金属表面显微尺寸的电化学不均匀性角度去理解。
文献[6,7]表明,金属表面电化学的不均匀性,会使金属材料表面存在微小的电位高低不等的区域,促使电化学腐蚀行为的发生。主要类型有:(1)金属表面化学成分的不均匀性而引起微观电池,如工业铸铁中的石墨、碳钢中的渗碳体Fe3C、纯锌中的铁杂质FeZn7等在腐蚀介质时表面就会形成许多微阳极和微阴极而导致腐蚀(如图4-a);(2)金属组织的不均匀性而构成微观电池,如晶粒与晶界、裂缝(或凹痕)处的腐蚀微电池,晶界及孔隙处作为阳极而优先发生腐蚀(如图4-b);(3)金属表面物理状态(应力分布、形变等)的不均匀性而构成微观电池,如钢铁弯曲处、铆钉头部区域容易优先腐蚀(如图4-c);(4)金属表面膜的不完整而形成微观电池,由于金属表面的钝化膜或镀覆的阴极性金属镀层等存在破损时,该处裸露的金属基体电位较负而作为阳极受到腐蚀(如图4-d)。

[3]徐泓,朱敏,魏明贵.铁粉吸氧腐蚀系列实验的设计及应用[J].化学教学,2015,(4):63~66.
[4]刘先昊,朱海英.钢铁吸氧腐蚀实验的条件优化[J].教学仪器与实验,2008,(108):37.
[5]董小玉,施志斌.对钢铁吸氧腐蚀现象的再讨论[J].教育界,2015,(31):148~149.
[6]陈鸿海主编.金属腐蚀学[M].北京:北京理工大学出版社,1995:15~56.
[7]刘秀晨,安成强主编.金属腐蚀学[M].北京:国防工业出版社,2002:38~64.