论文部分内容阅读
针对传统车牌检测方法定位不准确、检测结果易受环境影响的问题,提出一种基于Faster R-CNN和Inception ResNet_v2的车牌检测算法:通过迁移学习的方式实现精确的车牌定位,用像素点统计法处理车牌图像,实现单个字符的有效提取;mLeNet5卷积神经网络模型用于对单字符进行识别.结果表明,算法对有遮挡及角度倾斜的车牌字符能实现高效、高精确度的识别.