论文部分内容阅读
将微分进化算法的优点引入到盲源分离中,提出了基于微分进化的盲源分离算法。该算法以混合信号的峰度为代价函数,采用独立分量分析的方法对瞬时混合的信号进行盲分离。盲源分离中常用的自然梯度算法是一种局部寻优算法且收敛速度较慢,而微分进化算法是一种全局寻优算法且具有并行性、易实现等优点。分别用无噪仿真信号和有噪仿真信号对提出的算法进行仿真实验,比较了基于微分进化算法的盲源分离、基于粒子群优化算法的盲源分离和基于自然梯度算法的盲源分离的分离结果。结果表明:基于微分进化的盲分离算法收敛速度快,分离效果也比较好。