论文部分内容阅读
针对刀具寿命影响因素与刀具寿命之间的高度非线性关系,引入BP神经网络技术对刀具寿命进行预测,建立了刀具寿命预测模型.针对标准反向传播算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用粒子群算法优化网络权值及阈值,提高了神经网络的预测精度.仿真结果表明,与标准BP神经网络相比,PSO-BP神经网络用于刀具寿命预测的精度更高.