论文部分内容阅读
在研究神经网络优化的问题上,粒子群优化算法被广泛应用.针对基本粒子群优化算法收敛速度慢和易陷入局部最优等问题,提出了一种改进的粒子群优化算法.该算法除了采用线性惯性权值和进化速度-聚集度动态惯性权值相结合的方式来调整其权值,还将一种新颖的收缩因子引入到算法中.通过对4种典型测试函数进行仿真测试,实验结果表明新算法在收敛速度、收敛精度、改善优化性能上完全优于基本的粒子群优化算法,有效避免了基本群优化算法的缺陷.