论文部分内容阅读
动态模糊神经网络(DFNN)的性能和学习的稳定性取决于其预设参数的选择,针对DFNN多参数优化问题,提出了改进混沌粒子群优化算法,并将其应用于DFNN神经网络预设参数寻优,以获取最佳参数组合.实验结果表明,该方法能够快速有效地提取DFNN的最优参数组合,具有精度高、收敛快、迭代次数少等特点;利用改进混沌粒子群的动态模糊神经网络构建煤与瓦斯突出预测模型,具有良好的建模效果和更高的预测精度.