论文部分内容阅读
无人机遥感技术已逐渐成为获取作物表型参数的重要工具,如何在不降低测量精度的同时提高空间分辨率和测量通量受到表型研究人员的重视.该研究以玉米为研究对象,获取5个生育期无人机图像序列,结合小波变换与双三次插值对数码影像进行超分辨率重建,提取原始影像和重建影像的冠层结构、光谱等参数.基于单一参数和多模态数据构建地上生物量估算模型.结果表明:重建影像质量较高、失真较小,其峰值信噪比为21.5,结构相似性为0.81.航高60 m的重建影像地面采样距离与30 m的原始影像相近,但每分钟可多获取0.2 hm2地块的图像.多模态数据融合在一定程度上克服冠层饱和问题,相对于单一参数获得更高的生物量估测精度,拟合的决定系数为0.83,单一参数拟合的决定系数为0.095~0.750.在采用更高飞行高度条件下,结合超分辨率重建和多模态数据融合估算生物量的精度没有降低、反而略有提高,满足更高测量通量的需求,为解码基因型与表型关联的策略提供依据.