Methane dehydroaromatization-A study on hydrogen use for catalyst reduction, role of molybdenum, the

来源 :能源化学 | 被引量 : 0次 | 上传用户:baoyuan000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Methane dehydroaromatization was studied over Mo/SiO2 and Mo/HZSM-5 with different Mo loadings (2,5,10 wt%) at 973 K and 1023 K in a recirculating batch reactor.H2 pretreatment at 1023 K prior to methane activation has significantly improved the catalyst activity with increase in Mo loading and reduced the induction time on benzene formation in both Mo/SiO2 and Mo/HZSM-5.10 wt% Mo/HZSM-5 gave a maximum methane conversion of 19% and ~67% benzene selectivity at 1023 K.The XRD analysis of used catalysts revealed that the MoO3 species were converted to β-Mo2C phase.Studies on Mo/SiO2 catalysts showed that benzene was formed even in the absence of acidic zeolite sites.Reactions of ethylene in the presence of pure silica,HZSM-5 and in a blank reactor revealed that conversion of ethylene to aromatics was similar in case of the blank reactor and silica.Thus,it is believed that molybdenum carbide sites act as active sites only for C-H bond activation of methane and ethylene formation.Even though,ethylene can undergo subsequent oligomerization without any catalytic aid to form benzene at 973 K and above addition of acidic zeolites improved the selectivity of benzene.
其他文献
To construct efficient low band gap polymers,increasing the Quinone structure of the polymer backbone could be one desirable strategy.In this work,two D-Q-A-Q polymers P1 and P2 were designed and synthesized with thiophenopyrrole diketone (TPD) and benzot
To satisfy the rapid development of gas-involving electrocatalysis (O2,CO2,N2,etc.),nanostructured electrocatalysts with favorably regulated electronic structure and surface nanostructures are urgently required.Herein,we highlighted a core-branch hydroxys
MXene has shown distinctive advantages as anode materials of lithium-ion batteries.However,local surface chemistry,which was confirmed that can block ion transfer and limit redox reaction,has a significant effect on electrochemical performance.Herein,anne
Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101 facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs).Time-resolved photoIuminescence (TRPL) spectra revealed that the TiO2 NSs
Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries.However,uncontrolled lithium dendrites and infinite volume change during re
Hydrogenation of N-ethylcarbazole (NEC),the hydrogen lean form of a liquid organic hydrogen cartier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hydrogenation activity and selectivity
Recently,halide perovskite materials have become an exciting topic of research mainly due to their outstanding photovoltaic performance with the highest efficiency up to 22.1% at present.The nanocrystals (NCs) of these perovskites show quantum size effect
Carbon nanotubes (CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles (MoC x NPs) for the hydrogen evolution reaction (HER) pr
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-M
Two-dimensional (2D) layered vanadium disulfide (VS2) is a promising anode material for lithium ion batteries (LIBs) due to the high theoretical capacity.However,it remains a challenge to synthesize monodispersed ultrathin VS2 nanosheets to realize the fu