论文部分内容阅读
目前,网络评论的情感分类研究大部分是不平衡样本数据,正向样本的数量一般远大于负向样本,对这种不平衡样本集进行分类时容易产生少数类误差较大的问题。而且由于网络评论的表达形式多变,不易获取到大量的有监督的数据。针对上述问题,对无监督的不平衡网络评论情感分类进行研究。首先通过改进降噪自动编码器,提高少数类的特征值,避免分类样本向多数类偏移。然后将获取的特征值作为k-means算法的输入值,实现了无监督的样本分类。实验证明,该算法对不平衡率较高的样本具有良好的适应性,从而验证了算法的有效性。