论文部分内容阅读
随着计算机技术与网络技术的高速发展,大量的数据充斥着我们周围的世界。面对这些复杂的海量数据,如何才能准确无误地对它们进行辨别与分析,这对于人们来说是一个非常具有挑战性的问题。在计算机领域,图是一种非常灵活的数据结构,对图等含有结构化信息数据的进行学习,是模式识别和机器学习领域的一种重要问题。该文主要研究了通过核方法来解决这些识别问题,并且实例化了两种特殊的解决图匹配的核方法。在此基础上,分析了其解决这类问题的算法复杂度。实验结果表明,该文所提出的方法是一种解决图匹配的非常有效技术。