论文部分内容阅读
针对压缩感知雷达(Compressive Sensing Radar,CSR)在感知矩阵和目标信息矢量失配时距离-多普勒参数估计性能下降的问题,该文提出一种稳健的盲稀疏度CSR目标参数估计方法。首先建立了CSR系统模型失配时的距离-多普勒2维参数稀疏感知模型,推导了以最小化感知矩阵相干系数(Coherence of Sensing Matrix,CSM)为准则的波形优化目标函数。其次提出了一种新的盲稀疏度CSR目标参数估计方法,通过发射波形,系统模型失配误差和目标信息矢量的相互迭代,逐步校正系统感知