数列典型问题例析

来源 :数理化学习·高一二版 | 被引量 : 0次 | 上传用户:sxdinfo958
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  数列是高中数学的重要内容,其涉及的基础知识、数学思想方法、在高等数学中的学习中起着重要作用,因而成为历年高考久考不衰的内容.下面通过实例介绍评析几例,供读者参考.
  一、等差数列性质在解题中的应用
  由于等差数列运算的灵活性与技巧性较强,因此要学会借用等差数列的性质解题,以达到选择捷径,避繁就简,合理解题的目的.
  例1若{an}为等差数列,首项a1>0,a2007+a2008>0,a2007·a2008<0,则使前n项和Sn>0成立的最大自然数n是()
  (A)4013(B)4014(C)4015(D)4016
  解析:因为a1>0,a2007+a2008>0,a2007·a2008<0,
  所以{an}表示首项为正数,公差为负数的单调递减等差数列,a2007是绝对值最小的正数,a2008是绝对值最大的负数(第一个负数),且|a2007|>|a2008|,
  因为在等差数列{an}中,a2007+a2008=a1+a4014,S2008=40142(a1+a4014)>0,
  所以使Sn>0成立的最大自然数n是4014,故选(B).
  评析:在等差数列{an}中,若m、n、p、q∈N+,且m+n=p+q,则有am+an=ap+aq.利用这一性质解某些等差数列问题,可以将问题化难为易,化繁为简.
  二、待定系数法在解题中的应用
  有些非等差或等比数列通项公式问题,通过引入或研究一些尚待确定的系数转化命题结构,经过变形与比较,建立起含有待定字母系数的方程组,由此求出相应字母系数的值,进而使问题获解.
其他文献
不等式,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.而不等式的证明,方法灵活多样,还和很多内容结合,它既是中学数学教学中的难点,也是数学竞赛培训的难点,近年也演变为竞赛命题的热点,因其证明不仅蕴涵了
数形结合思想是中国古代数学四大数学思想之一,它体现的不仅是简单的一种解题思路,而是代表了一个时期数学发展的最高成果;经过了几代数学家的努力,这种思想和教学原则已经广泛运用于中学数学的教学当中.本文先讲述了数形结合的内涵和重要性,接着从“以数解形”和“以形助数”两个方面利用具体题目探讨其在高中数学教学中的具体应用.  一、数形结合的内涵和重要性  数字与图形,作为高中数学中两个重要的信息载体,代表的
函数在函数乃至整个高中数学中都占有重要的地位,也是高考必考的重点内容之一.三角换元思想是三角函数中的一个基本思想.本文主要研究三角换元思想的应用.  一、处理在圆及椭圆中取值范围问题  例1如果实数x、y满足(x-2)2+y2=3,那么x+y的最大值是.  解析:由题意x,y满足方程:x=2+3cosθ  y=3sinθ  则x+y=2+3cosθ+3sinθ  =6(22cosθ+22sinθ)
张同语新课标教材数学4北师大版98页有这样一道题,如图所示,已知Ax1,y1,B(x2,y2),试求以AB为直径的圆的方程.  利用平面向量数量积知识容易求得以AB为直径的圆的方程为x-x1x-x2+y-y1y-y2=0(1).这道题给出了圆的方程的又一种形式,一般称之为圆的两点式方程,该方程形式简明,富有美感,容易记忆.本文从以下几个方面挖掘其潜在的应用价值.  一、方程的直接应用  例1已知抛
两点间距离公式,点到直线间距离公式有着广泛的应用,可能因为其形式的“变脸”,使人们不易认清它们,结果导致解题思路受阻,一旦认清距离公式的“变脸”,问题就迎韧而解,下面举例说明.  一、解方程  例1解方程x2-4x+5+x2+1=22.  分析:配方使等式左边可作为两点间距离.  解:原方程配方得(x-2)2+1+x2+1=22,可作为x轴上一点P(x,0)到两定点A(2,1),B(0,-1)的距