论文部分内容阅读
基于银行交易具有动态变化、时效性和重复性的特点,文中通过对银行网络进行清洗和压缩,研究银行网络的基本拓扑统计性质和聚类结构,并得到交易网络满足复杂网络的小世界和无标度特性。针对已有的链路预测算法在动态网络预测中的不足,提出一种自适应的动态链路算法对银行客户交易进行预测。该方法在预测网络的基础上添加了节点重要性与节点连接强弱性两个特性,并将3种预测算法结合随机算法进行了对比分析。随后将这3种算法运用到具有动态交易特性的3类真实数据集中进行实验验证。实验结果显示,新算法的预测精度约为75%。将该算法与经典的预