论文部分内容阅读
在分析RBF神经网络基本结构的基础上,提出一种基于RBF神经网络求解非高斯概率密度近似为高斯概率密度和的方法。该方法通过选取高斯函数作为神经网络的径向基函数,提取训练好的网络参数,运用这些参数构建混合成分的函数模型。理论分析与仿真证明,与传统采用EM近似算法相比,该算法具有求解跟初值的选取无关、能避免发散、收敛快的特点。