论文部分内容阅读
针对传统卷积神经网络边缘提取局限性的问题,提出一种基于可变形卷积的图像边缘智能提取方法。根据图像边缘呈现的数据分布特点,采用多尺度可变形卷积,改进图像边缘提取网络。通过跨层融合特征图的方式引入可变形卷积网络模块,增强卷积网络对图像形状的适应能力和边缘特征提取效果。测试结果表明,该方法相比于其他多尺度融合算法具有更高的精度指标和效果。