论文部分内容阅读
针对传统异常行为自动检测方法的准确率和稳定性无法满足多变视频检测需求的问题,将最新的目标检测网络YOLOv3与目标跟踪算法相结合,通过对基于SORT多目标跟踪框架的改进,对检测目标的级联匹配采用了融合运动与外观特征的指标,以适应实际高架桥梁道路监控的情况。然后利用改进的多目标跟踪算法,对城市高架道路监控视频中的目标进行跟踪,配合相应的轨迹判别规则实现对视频中出现的行人、停车和车辆变道的交通行为异常情况的自动判别,具有较高的判别精度,可以达到实际应用目的。