论文部分内容阅读
本文提出了一种矩阵填充的子空间逼近法.该算法以奇异值分解的子空间逼近为基础,运用二次规划技术产生子空间中最接近的可行矩阵,从而获得较好的可行矩阵.该算法通过阈值的奇异值个数逐步减少达到子空间的降秩,最后得到最优低秩矩阵.本文证明了在一定条件下子空间逼近法是收敛的.通过与增广Lagrange乘子算法和正交秩1矩阵逼近法进行随机实验对比,本文所提方法在CPU时间和低秩性上均更有效.