基于BIC的语音识别模型压缩算法

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:laowang2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当对HMM(Hidden Markov Model,隐马尔科夫模型)语音模型进行GMM(Gaussian Mixture Model,混合高斯模型)区分训练增加组件时,语音模型的识别率会随着GMM的组件增多而增加,模型的大小也会增加,这就造成了语音模型的臃肿。而在移动端使用本地语音模型进行识别时,存放一个几百兆的模型很不合适。针对上述问题,本文提出将一个GMM组件数较多的语音模型利用BIC准则压缩到指定的组件数,从而在模型大小合适的情况下尽量保证模型的识别率。实验结果表明,使用本方法进行压缩之后的语音识别
其他文献
直接用SIFT算法对较模糊图像进行关键点提取时,提取的关键点个数较少且进行下一步匹配时错误匹配较多。提出一种基于SIFT特征的匹配算法,首先利用拉普拉斯算子对图像进行锐化处理,使其边缘得到突出,然后利用SIFT算法进行关键点提取,最后利用双向匹配算法进行图像匹配。实验结果表明,利用本文算法进行匹配比直接用SIFT算法进行匹配时的匹配点数更多,匹配效果更好。
由于数据流具有无限、高速等特性,使得对数据流的查询处理往往不是面向整个数据流,而是把查询处理的范围限定在某个可操作的范围内,比如一个数据窗口。另一方面,通过数据摘要
为提高数据共享效率,针对关系型数据提出一种基于Web Services的服务动态发布方法并抽象出CBC服务动态发布模型。该方法通过图形化界面选择数据库,构造查询约束信息,利用CBC服务